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I n this capsule, we give a direct proof that the Arctangent is an integral of 
It then becomes possible to use the Arctangent to determine the tangent and the other
trigonometric functions. Here (Figure 1) for any real number a, we define Arctan a

as the angle (in radians) determined by angle OPR, where is taken as negative if

In what follows, we fix a number This will determine two regions, as shown in
Figure 2. The region above the x-axis is bounded by the graph of and
the x-axis, where Therefore, the total area of this region is

Figure 1 Figure 2

The region below the x-axis is a sector of a circle having center and radius 1.
The sides of the sector are determined by the y-axis and the line connecting to

Thus, these sides determine the angle with value Arctan a. Since the area of a
sector of a circle of radius r and angle (in radians) is the total area of this
shaded region is Arctan a.

We shall show that these two shaded regions have equal areas. From this, it follows that
the Arctangent can be represented as an integral of the function 

First, consider the region above the x-axis (Figure 2). This region is divided into two
subregions, and The rectangle has area 

The shaded sector below the x-axis is also divided into two subregions, and 
Since triangle CPD is similar to triangle OPR, the legs PC and CD of triangle CPD have
lengths and respectively.ay!1 1 a2,1y!1 1 a2
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Thus, has area In particular,

It remains to be shown that First, solve the equation 

for x to obtain Then integrate this along the y-axis to obtain

Likewise, the circular boundary of can be represented as the graph of 

where Therefore,

Finally, we show that the integral for can be transformed into the integral 
for by means of the substitution Indeed, and

Therefore,

We have therefore shown that

Thus,

or

(*)

for 

A simple symmetry argument establishes the validity of (*) for Equation (*) is
clearly valid for Thus,(*) is valid for all real values a.

We outline a method for obtaining the derivatives of the trigonometric functions from
(*). First, apply the fundamental theorem of calculus to obtain the derivative of the
Arctangent. The function is the inverse of the
Arctangent,and its derivative can be obtained from the inverse function
theorem. Since the tangent function is a repetition of f on all intervals of the form

we have
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Next, use the tangent function to represent the secant,and differentiate to obtain the
usual formula for the derivative of the secant. For the derivatives of the sine and cosine,
observe that and for 
Differentiate to obtain the usual formulas with this restriction which can be removed by
use of the identities.

and  

Finally, the derivatives of the cotangent and cosecant can be obtained from the
derivatives of the sine and cosine in the usual way.
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