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1. Introduction. The past two decades have seen massive advances in computer
graphics. Computer-generated pictures have progressed from simple line drawings [1] to
breathtakingly beautiful full-color displays [2]. However, sometimes even a simple line-
drawing program can exhibit interesting, and unexpected, mathematical behavior. “The
Rose” is an example of such a program. This program has been used as a demo for 
AT & T’s “DMD 5620” terminal [3] and other sophisticated equipment. It gets its name
from the polar-coordinate graph of the function where n is a positive
integer. The graph of this function is an n-petaled rose if n is odd, and a -petaled rose
if n is even, as demonstrated by Figure 1.

2. The basic algorithm. “The Rose” uses the following algorithm, called algorithm-
A, to display polygons inscribed in n-petaled and -petaled roses.

1. Choose integers n, d such that and 

2. Set equal to zero, and set to 

3. Set equal to If replace by the remainder obtained when
dividing by 360. (That is, reduce mod 360.)

4. Compute reduce it mod 360, convert the result from degrees to radians, and
set x equal to the final result.

5. Set r equal to the sin of x.

6. Convert from degrees to radians, and set t equal to the result.

7. Convert the point from polar to rectangular coordinates to obtain the point

8. Draw a line from to 

9. If is equal to zero then stop, else set to and go back to
step 3.

Algorithm-A computes the points for and draws lines between each
pair of successfully computed points. The first computed point and the last computed point always
coincide, so the figure drawn is always a closed polygon. The values of n and d can be chosen at
random or supplied by the user of the program. Figure 2 gives examples of pictures drawn with
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FIG 2. “The Rose”drawings for random n and d.

randomly-chosen values for n and d. Unfortunately, not all of the drawings generated by
algorithm-A are as beautiful as those shown in Figure 2. Many of the drawings contain
only a few lines ,and many consist of a single dot. It would be esthetically pleasing to
get rid of these degenerate figures but first it is necessary to understand why they occur.
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Let G be the additive group of integers mod 360. Examination of steps 3 and 9 of
algorithm-A makes it obvious that the number of lines in a drawing is equal to the order
of d in G. (Some of the lines may be degenerate with starting and ending points
coinciding.) It is a simple matter to show that the order of d in G is equal to 
where k is the greatest common divisor of d and 360. Now, let H be the subgroup of G
generated by d. H has k distinct cosets in G of the form H,

A degenerate drawing is produced when the order of H is less than 360.
However, when this is the case, a drawing can also be produced for each of the cosets

Furthermore, a different drawing will be produced for each
distinct coset. The degenerate figures can be eliminated by superimposing the drawings
for the cosets over the drawing for H. Algorithm-B does exactly
this:

1. Choose integers n, d such that and 

2. Set T and c equal to zero.

3. Set equal to T. Compute the point convert it to
rectangular coordinates and set to the result.

4. Set equal to If replace by the remainder obtained when
dividing by 360.

5. Compute reduce it mod 360,convert the result from degrees to radians,and
set x equal to the final result.

6. Set r equal to the sin of x.

7. Convert from degrees to radians,and set t equal to the result.

8. Convert the point from polar to rectangular coordinates to obtain the point

9. Draw a line from to 

10. Add 1 to c.

11. If is equal to T then go to step 12,else set to and go
back to step 4.

12. If stop,else add 1 to T and go back to step 3.

Figure 3 gives drawings for various cosets with and Figure 4
demonstrates the difference between algorithm-A and algorithm-B for and

With this modification, it is possible to study the evolution of a drawing for a fixed n, as
d ranges from 1–360,without worrying about degenerate drawings. Figures 5a and 5b
illustrate this evolution for First the apparently smooth line of the drawing
becomes wider and more “lacy” until the space between the loops disappears. At the
same time a squarish figure appears in the center.
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FIG 3. Coset drawings for 

Eventually the squarish figure grows until it overwhelms the entire figure leaving holes
for the original petals. Then the petals become more “hairy” looking and the squarish
shape begins to degenerate into filig ree between the petals,until the shape disappears
entirely leaving only the hairy petals. This form of evolution takes place (at different
rates) for all figures with small n.

3. Very large n. All of the examples given so far have used fairly small values of n,
even though step 1 of both algorithms allows n to range from 1 to 359. As n becomes
very large (say greater than 60) the structure of the underlying rose disappears,but other
puzzling phenomena begin to occur. Figure 6 gives examples of some of these
phenomena.
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FIG 4. The difference between algorithms A and B.

Consider the drawing for This looks suspiciously like two copies 
of the drawing for rotated 180 degrees from one another. Further
experimentation with the program will show that the drawing for is
three circles whose centers are 120 degrees apart, and the drawing for is
four circles whose centers are 90 degrees apart. Furthermore, the drawing for

resembles two copies of the drawing for rotated 180
degrees from each other.
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FIG 5a. The evolution of for 

These resemblances are not superficial as the following theorem shows. We will call this
theorem the zero theorem because it involves adding an integer to a zero-divisor in
the ring of integers mod 360. The proof is a simple calculation and is omitted.

THE ZERO THEOREM. Let be evaluated for in degrees and let the points
represent the angle and radius of points in the usual polar coordinate system.

Let and m be integers and let If is of the form where i and j
are integers, then the point lies on the curve defined by 
rotated ni degrees clockwise about the origin.
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FIG 5b. The evolution of for 

Note that the zero theorem assumes that figures are drawn using a d that divides 360.
This implies that each copy of the “small n” figure is generated by a distinct coset of the
subgroup H of G generated by d. It turns out that the points computed from each
successive coset are ni degrees further along the graph of the “small n” figure as well as
being rotated ni degrees about the origin. For certain values of n and d, this produces an
amazing visual effect when the figure is drawn. For example when the polygon for

and is drawn, the observer sees a rotating pentangle which
eventually produces a figure which looks nothing like a pentangle (see Figure 7).
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FIG 6. Drawings with very large n.
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FIG 7. The rotating pentangle.

The zero theorem can be used to explain the appearance of the drawings for
(two copies of ); (four underlying circles

joined by horizontal and vertical lines); and (four “evolved” copies of
that overlap in pairs).

The zero theorem can be extended to negative offsets from zero-divisors by
observing that the graph of is identical to the graph of 
rotated 180 degrees about the origin. (Proof:

) It is a consequence of the zero theorem
that the figures for are identical to those for Therefore, selecting
n in this range provides the richest possible set of drawings.

Now consider the drawing for This drawing consists of two coinciding
circles of radius 1 (as opposed to the radius circle generated by ) and
two coinciding dots in the center (the dots may not be visible in Figure 6). Similar
drawings are generated for and for The following
theorem explains the appearance of these drawings. We will call this theorem the zero
theorem,because it concerns the zero-divisors of the ring of integers mod 360.
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THE ZERO THEOREM. Let be evaluated for in degrees,and let and n be
integers and let n divide 360.Then all points of the form lie on 
concentric circles centered on the origin (some of the circles may be of equal radius,
and some may be of radius zero).

Proof: Let m be the integer such that Consider all points of the form
with a constant. Then 

Since both n and
a are constant,so is As a ranges from zero to distinct sets of values
are produced. The graph of is a circle of radius about the origin. h

For there are four distinct sets of values which produce the curves
and which are circles of radius 0,1,

0, and 1,respectively. When the polygon for and is drawn, one can see
the second big circle being plotted, since the plotting points don’t coincide. The dot in
the center is,obviously, the plot of the zero-radius circles.

Lastly, consider the two most puzzling drawings in Figure 6,namely, those for
and Experimentation with the parameters
will show that even a slight change in n or d will make the spiral

disappear. Furthermore, there are only a few combinations of n and d that give rise to
spirals in the first place. It turns out that the curve for and coincides
exactly with the graph of plotted in 7-degree increments from 0 to 2520
degrees. The critical factor is that the product of 103 and 7 is equivalent to 1 mod 360.
The following theorem,which we will call the unity theorem,explains this phenomenon.

THE UNITY THEOREM. Let be evaluated for in degrees,and let n and m be
integers such that mod 360. Let be an arbitrary integer. Then the points

all lie on the graph of the equation Furthermore, if
is evaluated in m degree increments,an approximation to the graph of

will be produced.

Proof: Given an integer Since
the points and coincide. To show

that produce successive points along the curve, observe that
h

The unity theorem has the following corollary: Let m and n be two integers,
such that n has multiplicative inverse mod 360. Then it is

possible to produce an approximation to the graph of using algorithm-B
and an appropriate selection of the parameters of n and d. The final drawing of Figure 6,
with and is an “evolved” graph of 

4. Dividing the circle into an arbitr ary number of parts. Although dividing the
circle into 360 equal parts is a time-honored tradition,there is no reason why some other
number of subdivisions cannot be used. In fact,sometimes a small change in the number
of circle subdivisions can make a profound difference in the drawings generated for a
given n and d. The following algorithm, called “algorithm-C” allows the circle to be
divided into z parts,where z is an arbitrary positive integer.
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1. Choose integers z, n, d such that and 

2. Set T and c equal to zero.

3. Set equal to T. Compute the point convert it to
rectangular coordinates and set to the result.

4. Set equal to If replace by the remainder obtained when
dividing by z.

5. Compute reduce it mod z, multiply by and set x equal to the final
result.

6. Set r equal to the sin of x.

7. Set t equal to 

8. Convert the point from polar to rectangular coordinates to obtain the point

9. Draw a line from to 

10. Add 1 to c.

11. If is equal to T then go to step 12,else set to and go
back to step 4.

12. If stop,else add 1 to T and go back to step 3.

Figure 8 demonstrates the effect of changing the number of circle-subdivisions from 360
to 359. Since 359 is prime, there are no analogs of the zero and zero theorems,but
the unity theorem still applies. Figure 9 gives some examples of drawings created with
359 circle subdivisions. None of these drawings could have been created with 360
subdivisions.

5. Conclusion. Because they are static, the drawings presented in this article cannot
do justice to “The Rose”program. Readers with access to high-speed computer graphics
equipment are encouraged to implement their own versions of “The Rose”and view the
construction of the drawings first-hand. Many of the drawings exhibit apparent motion
as they are being drawn, and in some cases,such as the rotating pentangle described
above, the visual effect is quite stunning.
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FIG 8. The effect of changing circle subdivisions.
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FIG 9. Drawings created with 

There are a number of interesting, and probably not too difficult, problems that remain
to be solved. Among them are:

1. What are the rules that govern the shape of the individual cosets drawn by
algorithm-B?
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2. Many of the drawings have apparent curves that are generated by intersections of
lines. What are the parametric equations for these curves? Are any of these curves
well known? How do the parametric equations evolve as the figure evolves?

3. Algorithms A and B both draw illustrations of the additive group of integers mod
360 and its subgroups. What about the multiplicative group and its subgroups?

4. When n is odd, each line drawn by algorithms A and B is drawn twice. Can any
use be made of this?

5. In this article, considerable use was made of the fact that is periodic in
In fact,the periods of these functions are usually much smaller than Is

this important?

6. What about sums and products of sin and cos functions?

There are undoubtedly many other interesting questions that could be asked. The reader
is encouraged to try his hand at discovering them.
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